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ON THE ALMOST-SURE ASYMPTOTIC STABILITY
OF SECOND ORDER LINEAR STOCHASTIC SYSTEM
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A method for obtaining a su$cient almost-sure stability condition for second
order linear systems with an ergodic sti!ness coe$cient is presented. In this
method, a special Lyapunov function for achieving functional optimization is
constructed and the probabilistic property of the derivative process of the sti!ness
is taken into account. A su$cient condition for almost-sure asymptotic stability is
derived and numerical results are presented for the cases of Gaussian noise and
periodic noise coe$cient. The results obtained here are an improvement over
previously available results for linear systems with stochastic sti!ness.
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1. INTRODUCTION

The almost-sure (abbreviated as a.s.) asymptotic stability of the trivial solution of
the second order system in the form

xK#2[f#f (t)]xR #[1#g (t)]x"0,

where f (t) and g(t) are ergodic random processes, has attracted intensive study in
the last three decades. When f (t) and g(t) are ergodic wide-band Gaussian processes
which may be approximated by white noise processes, the almost-sure asymptotic
stability of the system has been considered by Mitchell and Kozin [1], who
employed a method of Khas'minskii's [2] to obtain numerically the exact stability
boundary. When f (t) and g(t) are arbitrary ergodic random processes, Kozin and
Wu [3] took into account the distribution properties of the coe$cient processes
and obtained su$cient a.s. asymptotic stability boundaries numerically, which
enabled them to obtain much sharper results than those obtained by Infante [4].
Using the optimization method, Ariaratnam and Xie [5, 6] have considered the
asymptotic stability boundaries of the system in the cases when f (t) and g(t) are
uncorrelated or correlated. It is known, however, that knowledge of more statistic
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information on the processes f (t) and g (t) should enable one to get sharper and
su$cient a.s. asymptotic stability boundaries. In fact, Ariaratnam and Xie [7] took
the derivative process of f (t), fQ (t) into account and enlarged the asymptotic stability
boundaries in the case when g (t) equals zero. In this paper, the a.s. asymptotic
stability of the system is considered in the case when f (t) equals zero. We applied
a special Lyapunov function with a view to achieving functional optimization that
takes the derivative process of g(t), gR (t) into account.

It is shown that the asymptotic stability boundaries can be signi"cantly
enlarged for Gaussian and periodic excitation. Numerical results and comparison
with previous results are presented.

2. FORMULATION

Consider the following second order system:

xK#2fxR #[1#g (t)]x"0, (1)

where f*0 is a damping coe$cient, and g (t) is a stationary ergodic di!erentiable
process with zero mean value.

In previous studies [1, 3}6], the probabilistic properties of the derivative process
gR (t) were not taken into account. In order to bring in the in#uence of the derivative
process gR (t), a transformation of the following form is considered:

x"ye~ft (2)

which, when substituted into equation (1), yields

yK#[c#g (t)]y"0, (3)

where c"1!f2.
Equation (3) can be written in the state equation forms as

yR
1
"y

2
,

(4)
yR
2
"![c#g (t)]y

1
.

It may be noted that in equation (3) the damping term has been removed, which is
a signi"cant change, since for this case the norm of y, EyE (Lyapunov function), may
be given in the very simple form

EyE2"<(y)"yTAy, (5)

where A is a positive-de"nite matrix of the form

A"C
a2(t)

0
0
1D , (6)
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where a (t)*d'0 is a stochastic process to be determined and d is a constant. The
time derivative of < along the trajectories of equation (4) yields

<Q (y)"yTBy, (7)

where

B"C
2a5 (t)a (t)

a2 (t)!c!g (t)
a2(t)!c!g(t)

0 D . (8)

Therefore, since A, B are real symmetric matrices and A is positive de"nite, one has

<Q
<
"

yTBy
yTAy

)j(BA~1), (9)

where j is the maximum eigenvalue of BA~1, i.e., j is the maximum root of the
determinant equation

DB!jAD"0. (10)

Equation (9) yields

<[y(t)])<
0
expGP

t

0

j(q) dqH,

where <
0
"<[y(0)]. Since EyE2"<, there is

EyE2)Ey
0
E2 expGP

t

0

j (q) dqH"Ey
0
E2expGt

1
t P

t

0

j(q) dqH. (11)

For stationary ergodic process g(t) it is supposed, in a tradition followed in
previous studies, that j(t) is also a stationary ergodic process. When tP#R, the
right-hand side of equation (11) goes to Ey

0
E2expMtE[j (t)]N with probability

1 (w.p.1). Therefore from equation (2) there is w.p.1 as tP#R,

Dx D2"Dy
1
D2expM!2ftN)

1
d2

EyE2expM!2ftN)
1
d2

Ey
0
E2expMtE[j(t)]!2ftN,

where D ) D denotes the absolute value.
Therefore as tP#R, w.p.1,

Dx D)
1
d

Ey
0
EexpG

t
2

[!2f#E[j (t)]]H. (12)
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Letting

j*"1
2
[!2f#E[j(t)]],

a su$cient condition for a.s. asymptotic stability of the trivial solution of equation
(1) is given by

j*)!e, e'0
or

!2f#E[j(t)])!e. (13)

Substituting matrices A, B from equations (6) and (8) into equation (10), one obtains

DB!jA D"C
!ja2(t)#2a5 (t)a (t)

a2 (t)!c!g (t)
a2(t)!c!g (t)

!j D"0,

i.e.,

j2a2(t)!2a(t)a5 (t)j![a2 (t)!c!g(t)]2"0.

Therefore, its maximum eigenvalue is

j"
1

a (t)
Ma5 (t)#Ja5 2(t)#[a2 (t)!c!g(t)]2N. (14)

Substituting equation (14) into equation (13), it follows that the trial solution of
equation (1) is asymptotic stable w.p.1 if

!2f#EG
1

a(t)
Ma5 (t)#Ja5 2 (t)#[a2(t)!c!g (t)]2NH)!e. (15)

Since

Ja5 2(t)#[a2(t)!c!g(t)]2)Da5 (t) D#Da2(t)!c!g (t) D

condition (15) can be relaxed to the following condition:

!2f#EG
1

a (t)
Ma5 (t)#Da5 (t)#Da2 (t)!c!g (t) DNH)!e. (16)

If a(t) is chosen as constant as in the studies cited [1, 3}7], a5 (t)"0, then condition
(16) becomes

E Da2!c!g(t) D)2fa!e, (17)

where a is a constant to be determined to get the sharpest stability boundary.
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However, the right-hand side of inequality (17) should be 2fa!ae; since e is an
arbitrary positive constant, it can be written in the form in inequality (17). In the
following cases, e may have di!erent values in di!erent equations. If the stability
condition is desired in terms of EMg2 (t)N, applying Schwarz inequality, there is

E Da2!c!g (t) D)JE(a2!c!g (t))2.

Then condition (17) may be relaxed as

E(a2!c!g (t))2)4f2a2!e.

Remembering that Eg(t)"0, the above inequality yields

Eg2(t))!(a2!f2!1)2#4f2!e.

Since e is an arbitrary positive constant, the above condition yields the following
stability boundary:

Eg2 (t)"!(a2!f2!1)2#4f2.

Obviously, when a"Jf2#1, one obtains the maximum stability boundary

Eg2 (t)"4f2

which is the same as that of Infante's [3]. In the same way, condition (17) yields the
following stability boundary:

E Da2!c!g (t) D"2fa.

In previous studies a is a constant to be determined to get a sharper stability
boundary with a view to achieving function optimization. However, with a view to
achieving functional optimization, we can choose a (t) as a stochastic process to get
a sharper stability boundary. It is best to choose a (t) in such a way that the
left-hand side of inequality (16) reaches the minimum value. But such a(t) is not easy
to obtain. Hence a (t) is chosen such that the following equation will reach the
minimum value:

EG
1

a (t)
MDa2(t)!c!g (t) DNH"min.

Obviously, a (t)"JDc#g(t) D. Since a(t) should be greater than some positive
number, a(t) is selected to be

a(t)"G
d

JDc#g(t) D

when Dc#g (t) D)d2,
when Dc#g (t) D'd2,

(18)
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where d'0 is a constant to be determined. Equation (18) yields

a5 (t)"G
!

gR (t)
2JDc#g (t) D

when c#g(t)(!d2,

0 when !d2)c#g(t))d2,

gR (t)
2JDc#g(t) D

when c#g (t)'d2.

(19)

For process g(t)"g(t, u), u3X, and X being the sample space, it is supposed that
the set G"M(t, u) : Dc#g (t, u) D"dN is a zero-measure set; then a(t) is di!erentiated
beside set G and equations can be derived without considering the case when
(t, u)3G. In fact, a(t) may be undi!erentiated at the point &&t'' such that
Dc#g (t) D"d. Substituting equations (18) and (19) into inequality (16), the following
a.s. condition is obtained:

!2f#EG
DgR (t) D!gR (t)
2 Dc#g (t) D

, c#g (t)(!d2H#EG
DgR (t) D#gR (t)
2 Dc#g(t) D

, c#g (t)'dH
#2EMJDc#g(t)D, c#g(t)(!d2N#EG

d2!c!g (t)
d

, !d2)c#g(t))d2H)!e,

(20)

where d'0 is a constant to be determined such that the left-hand side of inequality
(20) reaches the minimum value.

If the probabilistic properties of g (t) and gR (t) are known, from condition (17) or
condition (20), the stability boundary of the trivial solution of equation (1) can be
obtained. By combining conditions (17) and condition (20), a shaper stability
boundary can be obtained.

In the following section, some speci"c examples are given.

3. EXAMPLES

In this section, the results of conditions (17) and (20) are applied to the case where
the noise coe$cient is Gaussian and to the case where the coe$cient is a cosine
function with random phase. For these cases numerical computations are required,
and the approach is described below.

3.1. EXAMPLE 1

Consider the case when g(t) is a zero mean Gaussian process. The density
function of g (t) is

p(g)"
1

J2np
g

expG!
g2

2p2
g
H . (21)
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From equation (17) the stability boundary is obtained as

E Da2!c!g(t) D"2fa,

i.e.,

P
`=

~=
Ka2!c!g K

1

J2np
g

expG!
g2

2p2
g
H dg"2fa. (22)

In order to obtain the best-possible condition, the parameter a is considered to
be not only a function of sti!ness f but also a function of p

g
. By using the

optimization numerical computation method, a suitable a is chosen such that p
g

reaches the maximum value for a given f. The results of the numerical computation
are shown in Fig. 1 by curve 3.

Since g(t) is a Gaussian process, the derivative process gR (t) is also a zero mean
Gaussian process. The density function of gR (t) is

p (gR )"
1

J2np
g5
expG!

g2

2p2
g5
H. (23)

Since EMg (t)gR (t)N"0 and g(t) and gR (t) are independent, there is

EG
DgR (t) D!gR (t)
2 Dc#g(t) D

, c#g(t)(!d2H
"EMDgR (t) D!gR (t)NEG

1
2 Dc#g(t) D

, c#g (t)(!d2H
"EMDgR (t) DNEG

1
2 Dc#g(t) D

, c#g (t)(!d2H
"

p
g5

J2n P
~d2~c

~=

1
Dc#g D

1

J2np
g

expG!
g2

2p2
g
H dg (24)

Similarly,

EG
DgR (t) D#gR (t)
2 Dc#g (t) D

, c#g(t)'d2H
"

p
g5

J2n P
`=

d2~c

1
c#g

1

J2np
g

expG!
g2

2p2
g
Hdg (25)



Figure 1. Regions of a.s. asymptotic stability for xK#2fxR #[1#g (t)]x"0, curve: (1) via Infante
[4], (2) via Kozin and Wu [3], (3) via equation (22).
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Substituting equations (24) and (25) into equation (20), a su$cient asymptotic
stability boundary is obtained

p
g5

J2n CP
~d2~c

~=

#P
`=

d2~c
D

1
Dc#g D

1

J2np
g

expG!
g2

2p2
g
Hdg

#2 P
~d2~c

~=

JDc#g D
1

J2np
g

expG!
g2

2p2
g
H dg

#P
d2~c

~d2~c

d2!c!g
d

1

J2np
g

expG!
g2

2p2
g
H dg"2f, (26)

where d'0 is a constant to be determined. Let u"p
g5
/p

g
for given u and f, and

d'0 is chosen such that p
g

reaches the maximum value. For di!erent
u(u"0, 0)1, 0)2, 0)5), the results of the numerical computation are shown in Fig. 1
by the curves u"0, 0)1, 0)2, 0)5 respectively.

The results of Kozin and Wu [3] and Infante [4], which are su$cient asymptotic
stability conditions without taking p

g5
into account, are represented in Fig. 1 by

curves 2 and 1, respectively, for comparing with the present results. It is obvious
that for small values of u, the results from equation (26) are the best; the results
from equation (22), which are independent of u, are better than those of Kozin and
Wu [3] and Infante [4]. For large values of u, the results of equation (26) may not
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be as good as those of Kozin and Wu [3] and Infante [4], but the results of
equation (22) are also better than those of Kozin and Wu [3] and Infante [4].
Hence, the improved results by combining equations (22) and (26) are better than
those of Kozin and Wu [3] and Infante [4].

3.2. EXAMPLE 2

Consider the case when g (t) is a periodic coe$cient

g(t)"A cos(ut#h), (27)

where A*0, u*0 are "xed amplitude and frequency, and h is a uniformly
distribution random phase on the interval [0, 2n].

The density function for this process is

p (g)"
1

nJA2!g2
, Dg D(A (28)

and is independent of u or h.
However, in equation (28) g is a variable and does not present the stochastic

process g (t), which is de"ned by equation (27). And for arbitrary t, g(t) has the same
density function p(g) which is independent of the random variable g(t).

From condition (17), the following stability boundary can be obtained:

E Da2!c!g(t) D"P
A

~A

Da2!c!g (t) D

nJA2!g2
dg"2fa.

Let u"g/A; the above equation yields

P
1

~1

Da2!c!Au D

nJ1!u2
du"2fa , (29)

where a'0 is a constant to be determined such that the amplitude A reaches the
maximum value.

The way to choose a can be discussed in the following three cases.
In the case when Da2!c D)A

P
1

~1

Da2!c!Au D

nJ1!u2
du"!P

1

(a2~c)@A

a2!c!Au

nJ1!u2
du#P

(a2~c)@A

~1

a2!c!Au

nJ1!u2
du

"2 C
a2!c

n
arcsin

a2!c
A

#

A
n S1!A

a2!c
A B

2

D"2fa. (30)
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Let

t"
a2!c

A
h (t)"t arcsin t#J1!t2.

From the calculation, one can choose a'0 such that the amplitude A reaches the
maximum value

A
1
"maxA"max

l |D G
n2f2t
4h2(t)

#S
n4f4t
4h4(t)

#

n2f2(1!f2)
h2 (t) H , (31)

where the domain D is

D"Mt :!1)t)1, n2f2t2#4(1!f2)h2 (t)*0N. (32)

Obviously, domain D is not a null set; in fact t"1 is a point in the domain D, and
hence the maximum value A

1
de"ned by equations (30) and (31) exists.

In the case when a2!c'A, equation (29) yields

P
1

~1

Da2!c!AuD

nJ1!u2
du"P

1

~1

a2!c!Au

nJ1!u2
du"a2!c"2fa,

i.e., (a!f)2"1. Let a"f#1, the maximum value of A is

maxA"2f#2f2.

In the case when a2!c(!A, c"1!f2'0, equation (29) yields

P
1

~1

Da2!c!Au D

nJ1!u2
du"!P

1

~1

a2!c!Au

nJ1!u2
du"!a2#c"2fa,

i.e., (a#f)2"1. Let a"1!f, the maximum value of A is

maxA"2f!2f2.

To sum up the above three cases, the maximum value of A can be obtained from
equation (17)

maxA"maxM2f#2f2, A
1
N, (33)

where A
1

is de"ned by equation (31).
Equation (27) yields

gR (t)"!A sin(ut#h), DgR (t) D"uJA2!g2(t). (34)
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Using the symmetric property of sin(ut#h) and cos(ut#h), there is

E G
gR (t)

2 Dc#g (t)D
, c#g (t)'d2H"E G

gR (t)
2 Dc#g (t)D

, c#g(t)(!d2H"0. (35)

Substituting equations (34) and (35) into equation (20), the following stability
boundary is obtained:

u
2

E G
JA2!g2 (t)
2 Dc#g (t)D

, c#g(t)(!d2H#
u
2

E G
JA2!g2 (t)

c#g (t)
, c#g (t)'d2H

#2EMJDc#g(t)D, c#g (t)(!d2N#EG
d2!c!g(t)

d
, !d2)c#g (t))d2H

"2f,

i.e.,

u
2 P

A

d2~c

JA2!g2

c#g
dg

nJA2!g2
!

u
2 P

~d2~c

~A

JA2!g2

c#g
dg

nJA2!g2

#2 P
~d2~c

~A

JDc#gD
dg

nJA2!g2
#P

d2~c

~d2~c

d2!c!g
d

dg

nJA2!g2

"2f.

After calculation, the above equation results in

u
2

ln K
(c#A) (c!A)

[c#(d2!c)][c#(!d2!c)] K#2P
~d2~c

~A

JDc#gD
dg

nJA2!g2

#

(d2!c)
d Aarcsin

(d2!c)
A

!arcsin
(!d2!c)

A B
#

1
d

[JA2!(d2!c)2!JA2!(!d2!c)2]"2fn, (36)

where d'0 is constant to be determined such that the amplitude A reaches the
maximum value. In the case when !d2!c(!A, or d2!c(!A, one should
only substitute all terms of (!d2!c) or (d2!c) in equation (36) into !A. In the
case when !d2!c'A, or d2!c'A, one should only substitute all terms of
(!d2!c) or (d2!c) in equation (36) into A.



Figure 2. Regions of a.s. asymptotic stability for xK#2fxR #[1#g (t)]x"0, curve: (1) via Infante
[4], (2) via Kozin and Wu [3], (3) via equation (33).
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For di!erent u and f, d'0 is selected such that the amplitude A reaches the
maximum value. Obviously,

p2
g
"EMg2(t)N"EMA2 cos2 (ut#h)N"

A2

2
,

p2
g
"EMgR 2 (t)N"

A2

2
u2,

u"

p
g5

p
g

.

For di!erent u ("0, 0)1, 0)2, 0)5, 1), the results of the numerical computation are
shown in Fig. 2 by the curves u"0, 0)1, 0)2, 0)5, 1 respectively.

The results of Kozin and Wu [3] and Infante [4], which are su$cient asymptotic
stability conditions without taking p

g5
into account, are represented in Fig. 2 by

curves 2 and 1, respectively, for comparing with the present results. It is obvious
that for small values of u, the results from equation (36) are the best; the results
from equation (33), which are independent of u, are better than those of Kozin and
Wu [3] and Infante [4]. For large values of u, the results of Equation (36) may not
be as good as those of Kozin and Wu [3] and Infante [4], but the results of
equation (33) are also better than those of Kozin and Wu [3] and Infante [4].
Hence, the improved results by combining equations (33) and (36) are better than
those of Kozin and Wu [3] and Infante [4].
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4. CONCLUSION

By using a speci"c Lyapunov function on the view of functional optimization, the
method of obtaining a su$cient a.s. condition for second order linear systems with
an ergodic sti!ness coe$cient has been presented, which also takes into account the
probabilistic property of the derivative process of the sti!ness coe$cient.
A su$cient condition for stability has been derived and numerical results have been
presented for the cases of a Gaussian noise coe$cient and periodic noise coe$cient.
The results have been found to be an improvement over those in the literature for
systems with a stochastic sti!ness coe$cient.
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